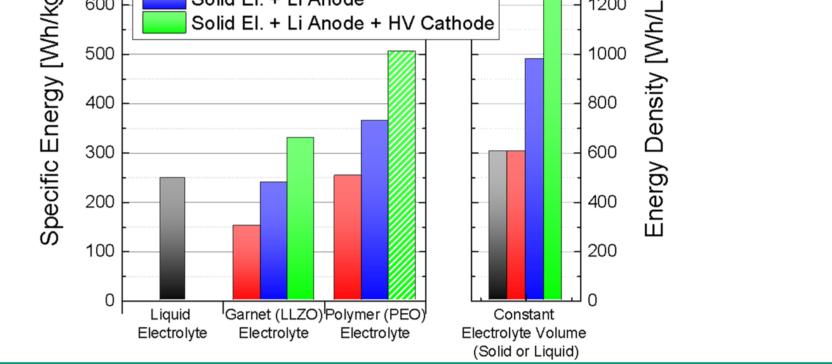


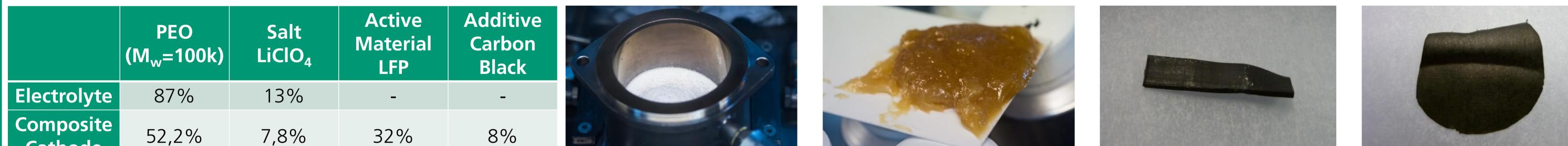
FRAUNHOFER - INSTITUTE FOR MANUFACTURING TECHNOLOGY AND ADVANCED MATERIALS IFAM


All-Solid-State Rechargeable Batteries: Manufacturing of Composite Cathodes

Peters, F.; Hein, S.; Bardenhagen, I.; Jentzsch, S.; Schwenzel, J.

Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany contact: fabian.peters@ifam.fraunhofer.de

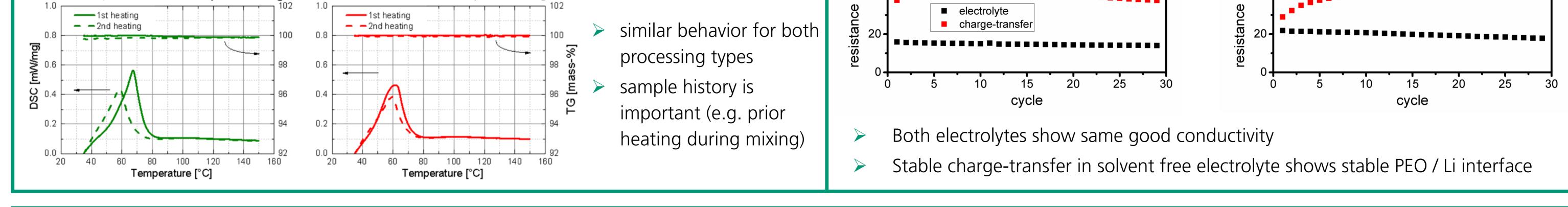
Motivation	
All-solid-state batteries have great potential for both improvement of cell safety and increase of energy density	700 - Liquid Electrolyte (Reference) Solid Electrolyte Solid El. + Li Anode


- Calculations reveal specific energies beyond 400 Wh/kg and energy densities of more than 1200 Wh/L
- Safety improvements by removing the flammable liquid electrolyte
- Great challenges remain in manufacturing of the components and the cell stack
- Especially the composite cathode requires a complex structure to ensure both good electric and ionic conductivity

Manufacturing of solid-state electrolytes and composite cathodes

- Solid precursors
- All steps carried out in inert Ar atmosphere.
- Electrolyte PEO : $LiClO_4$ (Li: O ratio: 1:16)
- Processing
 - solvent-based (wet)
 - solvent-free (dry)
- Additional steps for homogenizing and shaping

Powder	Mixing / Drying	Intermediate	Extrusion	Semi- manufactured	Shaping	Electrolyte / Cathode
 Polymer, Salt for Cathode Active Material, Carbon Blac 	or solvent-free (dry)	 Polymer with dissolved salt rigid at RT 	 Twin-screw extruder (heated) 	Rectangular shape	e.g. rolling, pressing	 Thin foils ~10-500µm



cathode, solvent-based processing

cathode, solvent-free processing

Conclusion

- Il-solid-state electrolytes and composite cathodes can be produced in a dry, solvent-free process
- \blacksquare SEM, IR, TG-DSC and CV/EIS measurements confirm that LiClO₄ salt is fully dissociated in PEO polymer for both wet and dry processing
- Dry processing eliminates the need for hazardous solvent (e.g. acetonitrile) in the production of solid-state electrodes and electrolytes
- Solvent-free processing may lead to more cost-effective, safe production in the large scale
- Further investigations will focus on improving methods to characterize quality parameters of the product, e.g. porosity and homogeneity

www.ifam.fraunhofer.de