Auger Electron Spectroscopy (AES)

Background:

AES involves the excitation and emission of Auger electrons by a finely focused electron beam having a primary energy of maximum 20 keV. AES provides information about the elemental composition of solid surfaces to a depth of up to 10 nm. The analysis is non-destructive, semi-quantitative and covers all elements except H and He. The materials that can be analysed by AES are limited by their compatibility for doses of primary electrons and by the required conductivity. With the aid of a fracture-stage it is possible to use AES to study fresh fracture planes in suitable samples in ultra-high vacuum (UHV).

Analysis modes:

Surface spectroscopy

The surfaces of solids can be analysed at spots or in freely defined areas. The lateral analysis resolution is about 100 nm.

Surface imaging

In addition to secondary electron images, AE element distribution maps with a lateral resolution of about 100 nm can be recorded by scanning the primary electron beam across the surface.

Depth profiling

Using inert gas sputtering with simultaneous AE spectroscopy, quantitative elemental depth profiles down to about a micron can be recorded and hence the near-surface topo-chemistry of a sample can be determined.

Areas of application:

The main applications of AES are as follows:

- Internal and external metallic interfaces: segregation, contamination, corrosion
- Semiconductor surfaces: 3-D-structure, particle contamination, depth profiles
- Thin oxide or metallic films: Interface composition, elemental structure
- Analysis of fracture planes: segregation, grain boundary embrittlement, segregations at grain boundaries

Top: Secondary electron image of a fracture plane, induced in UHV, in the embrittled heat-affected zone of a Ni-alloy UDIMET 700

Bottom: Associated AES element distribution map for sulphur with monolayer concentration as the cause of embrittlement