

FRAUNHOFER-INSTITUT FÜR FERTIGUNGSTECHNIK UND ANGEWANDTE MATERIALFORSCHUNG IFAM INSTITUTSTEIL DRESDEN

WERKSTOFF-INNOVATIONEN IN DER ENERGIETECHNIK

Effizienzsteigerung in der Energietechnik durch den Einsatz hochtemperaturtauglicher, strukturoptimierter und nicht zuletzt kostengünstiger Materialien ist ein hochaktuelles Thema, mit dem sich Forschung und Entwicklung auseinandersetzen müssen. Der Institutsteil Dresden des Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung (IFAM) setzt seine langjährigen Erfahrungen für diesbezügliche Innovationen in der Energietechnik ein.

Das IFAM Dresden ist spezialisiert auf anwendungsorientierte Werkstoff- und Technologieentwicklung für innovative metallische Sinter- und Verbundwerkstoffe bis hin zur thermischen und strömungstechnischen Auslegung sowie Fertigung prototypischer Bauteile und Systeme. Schwerpunkte sind zum Einen zellulare metallische Werkstoffe wie metallische Hohlkugelund Leichtbaustrukturen, hochporöse Faserwerkstoffe, offenzellige PM-Schäume und 3D-Siebdruckstrukturen. Desweiteren werden Metall-Matrix-Verbundwerkstoffe, Leichtmetalle sowie Spezialwerkstoffe mit maßgeschneiderten Eigenschaftskombinationen für funktionelle und strukturelle Anwendungen entwickelt, z.B. thermoelektrische Werkstoffe sowie Materialien für die Erzeugung und Speicherung von Wasserstoff.

STRUKTUREN AUS METALLISCHEN KURZFASERN

Anwendungen:

- poröse Oberflächenbrenner
- Regenerator im Stirling-Motor
- Heißgasfiltration
- Katalysatorträger

Materialklassen:

- Sonderlegierungen
- Stähle, Cr, Ni, Cu, intermetallische Phasen

Vorteile:

- Beständigkeit bei sehr hohen Temperaturen
- geringes spezifisches Gewicht
- hohe Dimensionsstabilität
- Montagetoleranz

METALLISCHE 3D-SIEBDRUCKSTRUKTUREN

Anwendungen:

- Mikrowärmetauscher
- Bipolarplatte (Brennstoffzelle)

Materialklassen:

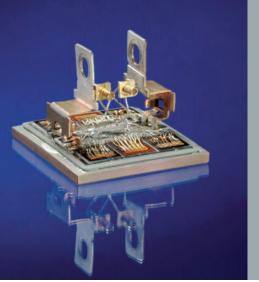
• sinterfähige Metallpulver (Cu, Stahl etc.)

Vorteile:

- große Wahlfreiheit in der Form der Strukturen
- funktionsgerechte Formgebung feinster Strukturen
- hohe Herstellungsstückzahlen
- Konturgenauigkeiten bis 5 μm
- Druckhöhe bis mehrere Zentimeter
- Kanaldurchmesser von minimal 100 µm

HOCHTEMPERATURBESTÄNDIGE NICKEL-BASIS-SCHÄUME

Anwendungen:


- Dieselpartikelfilter
- Dieseloxidationskatalysator
- Katalysatorträger (Biogasaufbereitung)
- Superkondensatoren
- Bipolarplatte in Brennstoffzellen

Materialklassen:

• oberflächenlegierter Nickel-Schaum (Inco)

Vorteile:

- Korrosionsbeständigkeit bei hohen Temperaturen
- hohe Designflexibilität und Formbarkeit
- thermische Stabilität
- einstellbare Oberflächenrauigkeit
- Technologie geeignet für kosteneffiziente Großproduktion (Pilotproduktion durch Fa. Alantum)

METALL - PCM - VERBUNDWERKSTOFFE

Anwendungen:

- Speicherung thermischer Energie (Solarthermie, Abwärmenutzung, thermisches Management)
- Pufferung zyklischer Wärmelasten (Elektronikkühlung)
- Wärmeübertrager (Regeneratorprinzip)

Materialklassen:

- metallische Komponenten: Cu, Al, Stahl etc.
- Phase Change Materials (Salzhydrate, Paraffine)
 ⇒ variabler PCM-Anteil (~ 30 -90 %)

Vorteile:

- Synergie im Materialverbund:
 hohe Wärmeleitfähigkeit des Metalls kombiniert mit
 hoher Wärmespeicherfähigkeit des PCM erlauben kurze
 Reaktionszeiten
- Fixierung des PCM auch im flüssigen Zustand durch Kapillarkräfte

VERBUNDWERKSTOFFE ALS WÄRMESENKEN

Anwendungen:

- passive Kühlung in der Elektronik
- Hochleistungskühlkörper

Materialklassen:

- faser- und partikelverstärkte metallische Verbundwerkstoffe
- Verwendung hochwärmeleitfähiger Zweitphasen (Graphit, Diamant)

Vorteile:

- Synergie im Materialverbund: hohe Wärmeleitfähigkeit mit geringer thermischer Ausdehnung ($\lambda > 400 \text{ W/mK}$ bei $\alpha < 10 \text{ ppm/K}) \Rightarrow \text{Passgenauigkeit ans Substrat}$
- erhöhte Zuverlässigkeit sowie Lebensdauer elektronischer Komponenten

MOLYBDÄN-SCHÄUME

Anwendungen:

- Wärmedämmung in Industrieöfen
- Katalysatoren für Hydrorefining, Desulfatisierung von Kohlenwasserstoffen

Materialklassen:

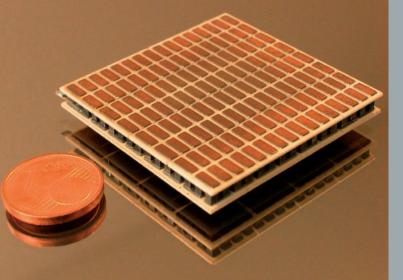
 Zellulare Metalle (offenzellige Metalle, Hohlkugelstrukturen)

Vorteile:

- Masse um Faktor 4,5 geringer
- Geringe Wärmeleitfähigkeit (< 5 W/m·K)
- Höhere Energieeffizienz durch geringere thermische Masse
- Wärmedämmung vergleichbar zu Blechen (Neuzustand)
- Hohe Durchströmbarkeit

WASSERSTOFFERZEUGUNG: HOCHLEISTUNGSELEKTROLYSE

Anwendungen:


 Elektroden in Großelektrolyseursystemen zur CO₂-freien Wasserstofferzeugung

Materialklassen:

 rascherstarrte metallische Gläser (Metall-Metalloid-Syteme)

Vorteile:

- hohe elekrokatalytische Aktivität
- geringe Überspannungen
- hohe Homogenität in der Elementverteilung
- hohe mechanische Stabilität
- gute chemische Beständigkeit
- günstige Materialpreise und -verfügbarkeiten

WASSERSTOFFSPEICHERUNG: MATERIALIEN & SYSTEME

Anwendungen:

- portable, mobile und kleinstationäre Wasserstoffspeicher
- Elektrodenmaterialien (Batterien)
- Sensoren

Materialklassen:

- Metallhydride
- Magnesium-reiche Leichtmetallhydride
- Komplexhydride (Alanate, Boranate)
- Hydrid-Kohlenstoff-Komposite

Vorteile:

- extrem hohe Speicherdichten
- maßgeschneiderte Kinetik
- maßgeschneiderte Wärmeleiteigenschaften
- hohe Sicherheit
- niedrigerer Arbeitsdruck
- robuste Speichertanksysteme
- variable Tankgeometrie
- Integration mit Brennstoffzellen
- Option: Abwärmenutzung

'n,

THERMOELEKTRISCHE WERKSTOFFE

Anwendungen:

- Heizen und Kühlen; Temperaturregelung
- direkte Umwandlung von (Ab-)Wärme in elektrische Energie (Thermogenerator)
- Sensorik
- energieautarke Systeme

Materialklassen:

- Polykristalline thermoelektrische Werkstoffe
- Nanostrukturierte Thermoelektrika
- IV-VI- und V-VI-Legierungen; Silizide, Clathrate

Vorteile:

- vibrationsfreie Halbleiterbauteile
- wartungsfrei; geräuschlos; große Homogenität
- günstiges Energy Harvesting
- schnell schaltbare Temperaturwechsel
- hohe mechanische Belastbarkeit (Sinterkörper)

www.ifam-dd.fraunhofer.de

KONTAKT

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM)

Institutsteil Dresden Winterbergstraße 28 01277 Dresden

Prof. Dr.-Ing. Bernd Kieback (Leiter des Institutsteils)

Tel.: +49 (0) 351-2537 300 Fax: +49 (0) 351-2537 399 E-Mail: Bernd.Kieback@ifam-dd.fraunhofer.de

Dr.-Ing. Thomas Weißgärber (Sinter- und Verbundwerkstoffe)

Tel.: +49 (0) 351-2537 305 Fax: +49 (0) 351-2537 399 E-Mail: Thomas.Weissgaerber@ifam-dd.fraunhofer.de

Dr.-Ing. Günter Stephani (Zellulare metallische Werkstoffe)

Tel.: +49 (0) 351-2537 301 Fax: +49 (0) 351-2537 399 E-Mail: Guenter.Stephani@ifam-dd.fraunhofer.de