Beschichten und Verbinden
in Pulvermetallurgie und Keramik

Vorträge
anlässlich des Symposiums am 26./27. November 1992 in Hagen

Veranstaltet vom
Gemeinschaftsausschuß für Pulvermetallurgie

des Vereins Deutscher Eisenhüttenleute (VDEh)
des Vereins Deutscher Ingenieure (VDI)
der Deutschen Gesellschaft für Materialkunde (DGM)
des Fachverbandes Pulvermetallurgie (FPM)
der Deutschen Keramischen Gesellschaft (DKG)

und dem
Gemeinschaftsausschuß für Hochleistungskeramik

VDI VERLAG
Vorwort

Das Ziel des Symposiums ist die möglichst umfassende Darstellung und Diskussion des aktuellen Standes der wichtigsten Techniken auf dem Gebiet der Beschichtung und Verbundbauteile in Zusammenhang mit pulvermetallurgischen und keramischen Problemlösungen. Zu den in den einzelnen Beiträgen aufgezeigten Verfahren gehören u. a. das Plasma- spritzen, die CVD- und PVD-Beschichtung, das Löten, Reibschweißen und heißisostatische Pressen. Daneben werden Anforderungsprofile, Aufbau und Eigenschaften beschichteter Werkstücke und von Verbundbauteilen in unterschiedlichen Anwendungsbereichen aufgezeigt. Im einzelnen werden z. B. vakuumplasmagespritzte Verschleißschutzschichten, kerami-
Gesinterte Verbundbauteile für Schaltgetriebe

D. Gonia, L. Schneider

1. Zusammenfassung

2. Einleitung

Getriebebauteile für Kraftfahrzeuge unterliegen stetig wachsenden Qualitätsanforderungen. Die mechanische Beanspruchung auf der einen Seite und die tribologische Beanspruchung auf der anderen Seite stehen sich für die Werkstoffauswahl oft diametral gegenüber. Für den Anwendungsfall Schaltgetriebe sollen anhand von zwei Bauteilen die Möglichkeiten aufgezeigt werden, die sich durch die konsequente Nutzung pulvermetallurgischer Verfahrensschritte bieten.

3. Bauteile im kraftübertragenden Bereich

Bei der Berechnung von Getriebezahnradrändern sind zwei grundsätzlich unterschiedliche Beanspruchungsarten zu berücksichtigen. Sowohl die Zahnfußfestigkeit als auch die Wälzfestigkeit der Zahnflanken müssen gewährleistet sein. Die notwendige Zahnfußfestigkeit erfordert einen festen, zählen Werkstoff, die Wälzfestigkeit dagegen verlangt nach einem hochverschleißfesten Werkstoff, in der Praxis wird dieses Problem durch die Verwendung von einsatzgehärteten, also oberflächenbehandelten Stählen, wie z.B. 16MnCr5E oder 20MnCr5E gelöst.

Der hergestellte radiale Schichtverbund, Verschleißwerkstoff außen und Konstruktionswerkstoff innen, wurde über isostatisches Pressen von Vorformen, Sintern und anschließendes Schmieden der zylindrischen Vorformen zu Zahnradern hergestellt. Die zylindrischen Vorformen wiesen bei einem Außendurchmesser von 64 mm und einem Innendurchmesser von 35 mm eine äußere Schichtdicke von 3 mm auf. Als Verschleißwerkstoff kamen Schnellstähle und nicklegierte Werkstoffe zum Einsatz, die Kernwerkstoffe waren un- oder niedriglegiert. Der beschriebene radiale Schichtverbund kann kostengünstiger als über isostatisches Pressen mit speziellen
Füllerpreßverfahren und den entsprechenden Werkzeugen hergestellt werden. Leider konnte bisher noch kein Preisausschnitt gegenüber spanend hergestellten Zahnrä dern nachgewiesen werden, so daß die Umsetzung des beschriebenen pulvermetallurgischen Produktes fraglich ist. Dies gilt um so mehr, da die konventionellen, spanenden Verfahren zur Herstellung von hochfesten Getrieberädern technologisch weit entwickelt sind.

4. Bauteile in der Synchronisierung

- duktile, gut wärmeleitende, ölverträgliche Matrix
- Anteile an bruchzähnen und gut verteilten Hartstoffpartikeln
- Anteile an ölverträglichen und warmfesten Festschmierstoffen
- durchdringende Poren zur Abführung des Schmieröles

Durch Variation der Bestandteile kann der Frikionswerkstoff dem jeweiligen Anwendungsfall angepaßt werden.

Tabelle 1 Gebräuchliche Werkstoffe für Synchronringe

<table>
<thead>
<tr>
<th>Konstruktionswerkstoff</th>
<th>Reibwerkstoff</th>
<th>Fügetechnik</th>
<th>Verbindungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messing</td>
<td>Messing</td>
<td>Klebung</td>
<td>Adhäsion</td>
</tr>
<tr>
<td>(Sinter)stahl</td>
<td>"Papier"</td>
<td>Spritzgießen</td>
<td>Formschluß</td>
</tr>
<tr>
<td>(Sinter)stahl</td>
<td>Kunststoff</td>
<td>Flammspritzen</td>
<td>mechanische Verklammerung</td>
</tr>
<tr>
<td>(Sinter)stahl, Molybdän</td>
<td></td>
<td>Aufsintern, Laser- schweßen des Bleches</td>
<td>Stoffschiß</td>
</tr>
<tr>
<td>(Sinter)stahl</td>
<td>Streusinter</td>
<td>Zusammenpressen, Sintern beider Werkstoffe</td>
<td>Stoffschiß</td>
</tr>
<tr>
<td>Sinterstahl</td>
<td>PM Fe-Basis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei Messing-Synchronringen, die nicht zur Verbesserung der tribologischen Eigenschaften mit einer Mo-Spritzschicht versehen werden, ergibt sich kein Fügeproble zwischen Konstruktionswerkstoff und Reibwerkstoff. Das verwendete Sondermessing vom Typ Cu-Zn-Al-Mn-Fe entspricht aber keinesfalls dem beschriebenen Ideal eines Reibwerkstoffes für Öllauf, da Festenschmierstoffe und Poren ganz fehlen.

Bild 2 Mo-Spritzschicht mit Träger

Bild 3 Streusinterbelag mit Träger

Der Streusinterbelag (Bild 3) besteht aus einer Kupferbasislegierung mit eingelagerten Hartstoffen, Festenschmierstoffen mit einem Anteil von Poren und wird in Pulverform auf ein Blech gestreut und aufgesintert. Er entspricht weitgehend dem Ideal des Reibwerkstoffes für Synchronringe. Abhängig von der Legierung können

![Reibbelag](image)

Bild 4 Fe-Basis Reibbelag mit Träger

Nur der Fe-Basis Reibbelag erlaubte die vollständige Nutzung der pulvermetallurgischen Formgebungstechniken zum fertigen Bauteil, da sich hier anders als bei Molybdän oder Kupferschichtlegierungen keine wesentlichen Schmelzpunktdifferenzen gegenüber dem Konstruktionswerkstoff Stinkerstahl ergeben, und damit die Wärmebehandlung beider Materialien in einem Prozeßschritt darstellbar ist [5].

Bild 5 Reibverhalten der Fe-Basis Reibbelages verglichen mit Referenzwerkstoffen

Bild 6 Verschleißverhalten des Fe-Basis Reibbelages verglichen mit Referenzwerkstoffen
Die tribologischen Eigenschaften sind mit denen der bekannten Molybdän- und Streusinterbeläge vergleichbar, wie praxisnahe Versuche auf Schwungmassenprüfständen gezeigt haben [5]. Reibungs- und Verschleißverhalten (Bild 5 und 6) werden noch Gegenstand weiterer Optimierungsarbeiten sein.

5. Pulvermetallurgische Lösungsansätze zum Verbundpressen

Die beiden beschriebenen Bauteile, gradiertes Getriebezahnrad und Synchronring mit integriertem Eisenbasis-Relibelag, weisen einen radialen Schichtverbund auf. Dieser ist über Fülltechniken wesentlich schwieriger zu realisieren als ein axialer Schichtverbund [1]. Die Herstellung von Schichtverbunden wird im allgemeinen aus folgenden Gründen angestrebt:

- Einsatz teurer Pulver nur in bestimmten Bauteilsektionen
- gezielte Einbringung von Eigenspannungen
- Realisierung nur partiell härterbarer Bauteile
- Erzeugung von Verschleißschichten am Außendurchmesser (Getriebezahnflanken) oder am Innendurchmesser von Bauteilen (Lager)
- Erzeugung von Fraktionsschichten in einzelnen Sektionen von Bauteilen (Synchronisierung)

5.1. Beschreibung bekannter Verfahren

5.1.1. Verbundpressen mit unverdichtetem Einlege teil [8]

Bild 7 Verbundpressen mit unverdichtetem Einlege teil

Das Füllverhalten des Pulvers bzw. des Pulvergemisches, welches über den Z/S-Körper in das Pulverpreßwerkzeug eingeführt wird, spielt hierbei keine Rolle. Dies ist besonders bei den oft mal schlecht fließenden Pulvern, die für die Herstellung von Fraktionswerkstoffen benötigt werden, von Bedeutung. Begrenzende Faktoren für das Verfahren sind die Handhabbarkeit des Z/S-Körper und der Preis für e-

Bild 8 Synchronring mit Fe-Basis Reibbelag

5.1.2. Pressen mit Vorverdichtung [7]

Bild 9 Verbundpressen mit Vorverdichtung

5.1.3. Verbundpressen ohne Vorverdichtung

5.1.4. Verbundpressen mit Doppelkammerfüllschuh und Separator [10]

5.1.5. Verfahren mit gesintertem Einlege teil [11]

Dieses Verfahren geht von einem bereits gesinterten Synchronringrohling aus, der mit einer Reibschicht versehen wird. Dabei wird wie folgt vorgegangen:

- Entfetten oder Sandstrahlen der zu beschichtenden Oberfläche
- Aufbringen einer Suspension aus Hartlochpulver und organischem Lösungsmittel
- Oxidation der beschichteten Teile bei ca. 300 bis 550 °C zur Eliminierung von Kohlenstoff in der aufgebrachten Schicht
- Reduktion des beschichteten Teiles bei ca. 600 bis 1000 °C
- Aufpressen eines Pulvergemisches auf die vorbehandelte Oberfläche in einer besonderen Vorrichtung wobei das Pulver sowohl axial als auch radial verdichtet wird
- Aufsintern der Reibschicht

5.2. Bewertung der Verbundpressstechniken

Bis auf das zuletzt beschriebene Verfahren wird ein Werkstoffverbund bereits durch Verbundpressen (VP) hergestellt. Dies ist sicherlich die kostengünstigere Lösung und vorzuziehen, wenn nicht Schmelzpункtsunterschiede der verwendeten Werkstoffe das gemeinsame Sintern ausschließen. Tabelle 2 faßt die Verwendbarkeit der einzelnen Verfahren zusammen:

Tabelle 2 Einsetzbarkeit der beschriebenen Verfahren zur Realisierung von radialen Schichtverbunden

<table>
<thead>
<tr>
<th>Verfahren</th>
<th>Werkstoffverbund</th>
<th>Eignung für gradiertes Zahnrad</th>
<th>Eignung für Synchronring</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP-Z/S</td>
<td>beim Pressen</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>VP mit Vorverdich-</td>
<td>beim Pressen</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>tung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP ohne Trenn-</td>
<td>beim Pressen</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>stempel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP mit Doppel-</td>
<td>beim Pressen</td>
<td>bedingt</td>
<td>nein</td>
</tr>
<tr>
<td>kammerfüllschuh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufsintern auf gesinternten Rohling</td>
<td>nach diversen Vorbehandlungen und Sinter</td>
<td>nein</td>
<td>ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verfahren</th>
<th>Rohteilhandhabung erforderlich</th>
<th>Anforderungen an Werkzeugtechnik</th>
<th>Anforderungen an Pressensteuerung</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP-Z/S</td>
<td>ja</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>VP mit Vorverdich-</td>
<td>nein</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>tung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP ohne Trennstempel</td>
<td>nein</td>
<td>hoch</td>
<td>hoch</td>
</tr>
<tr>
<td>VP mit Doppelkammerfüllschuh</td>
<td>nein</td>
<td>normal bis hoch</td>
<td>normal</td>
</tr>
<tr>
<td>Aufsintern auf gesinternten Rohling</td>
<td>ja</td>
<td>Zusatzaufwand für Sonderwerkzeug</td>
<td>normal</td>
</tr>
</tbody>
</table>

Zusammenfassend kann gesagt werden, daß die Kombination von mehreren Werkstoffen in einem Bauteil dann am sinnvollsten ist, wenn Verfahrensschritte eingespart werden können. Das heißt für die Pulvermetallurgie konkret, daß der Werkstoffverbund bereits beim Pressen erzeugt werden muß. Für den PM-Synchronring mit integriertem Fe-Basis Reibbelag bietet sich das Schichtverbundpressen ohne Vorpressen als die kostengünstigste unter den realisierbaren Verfahren an.

6. Erfolgsaussichten und Umsetzungsmöglichkeiten

Hochleistungszahnräder, die sich wohl nur pulvermetallurgisch als Verbundbauteile herstellen lassen, unterliegen einem starken Wettbewerbsdruck der etablierter Verfahren. Die Anforderungen an Laufrauhe und Maßgenauigkeit sind hoch. Solange wie es noch erforderlich ist, eine Nachbearbeitung der Oberflächen vorzunehmen, ist die Umsetzung der PM Getrieberräder fraglich.

Literatur:

[6] DP 3125578, "Verfahren zum Verdichten von Pulvern von Metallen und deren Legierungen zu Vorpreßkörpern"

[7] DE 3917277, "Verfahren und Vorrichtung zur Herstellung von Fertigteilen als Verbundkörper aus pulverförmigen Werkstoffen"

Löten von PM-Teilen

E. Lugscheider, W. Tillmann, Z. Feng, R. Wähling

1. Kurzfassung

Die Verbindungstechnik poröser Sinterstähle ist durch ein grundsätzliches Problem gekennzeichnet, nämlich der Infiltration des in flüssiger Form vorliegenden Lotes in das poröse PM-Bauteil. Konventionelle Hart- und Hochtemperaturlote sind demzufolge zum Scheitern verurteilt, da das Lot während des Lötprozesses in die offenen Poren eindringt und nicht mehr in ausreichender Menge für die Verbindungsaußbildung zur Verfügung steht.

Die Beherrschung dieses Problems und damit verbunden die Bereitstellung geeigneter Fügeverfahren, die eine preisgünstige Fabrikation hoher Stückzahlen zulassen, erweitert das Anwendungspotential von PM-Teilen beträchtlich.