Structural and hydrogen storage properties of melt-spun Mg–Ni–Y alloys

Siarhei Kalinichenka, Lars Röntzsch, Bernd Kieback

Institute for Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
Fraunhofer Institute for Manufacturing Technology and Applied Materials Research, Winterbergstrasse 28, 01277 Dresden, Germany

Abstract

Nanocrystalline magnesium-rich Mg–Ni–Y alloys were produced by melt-spinning. They were characterized regarding their microstructure, crystallization behaviour, and cyclic hydrogenation/dehydrogenation properties in view of their application as reversible hydrogen storage materials. Transmission electron microscopy reveals that these alloys consist in the as-spun state of mixtures of nanocrystalline Mg(Ni;Y) grains that are embedded in an amorphous matrix. Differential scanning calorimetry and X-ray diffraction analysis show that these alloys undergo several crystallization steps in the temperature range between 180 and 370 °C. It was found that only a few thermal activation cycles of the as-quenched ribbons are required in order to reach excellent hydrogenation/dehydrogenation properties of these alloys. In thermogravimetric analyses using a magnetic suspension balance it could be shown that these alloys can reach reversible gravimetric hydrogen storage densities of up to 5.3 wt.%-H with hydrogenation and dehydrogenation rates of up to 1 wt.%-H/min even at temperatures of 250 °C. The structure of the alloys remains nanocrystalline even after several hydrogenation/dehydrogenation cycles.

© 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Magnesium hydride and magnesium alloy hydrides are very promising materials for the solid-state storage of hydrogen due to high gravimetric hydrogen storage densities of up to 7.6 wt.%-H in the case of MgH2. Moreover, they are attractive for commercial use because of their cycle stability and the high abundance as well as the moderate cost of magnesium as lightweight base material [1]. Nevertheless, the slow hydrogen sorption kinetics and the high reactivity with humidity and oxygen are still challenges in view of practical applications.

In the last decade, increasing attention has been devoted to the research and development of novel magnesium-based alloys for hydrogen storage. It is now well established that, in order to enhance the hydrogen sorption kinetics, magnesium alloys should have a nanoscale crystal structure and should contain catalytically active elements such as transition metals, metal oxides, or rare earth elements [2]. For this purpose magnesium-rich alloys are commonly ground by high-energy ball-milling techniques to reduce the average grain size and to finely disperse catalyst particles [3–8]. Alternatively, nanocrystalline magnesium-rich alloys, which contain catalytic elements like transition metals or rare earths, can be produced by rapid solidification processes such as melt-spinning [9–14], where cooling rates can be expected in the range of 10^3–10^6 K/s [15]. With this high-yield rapid cooling technique, where material production rates in the range from 10^2 to 10^3 kg/h can be achieved in a single melt-spinning device, an amorphous or super-fine microstructure...
solidifies in the form of ribbons which are a few tens of micrometers thin.

In this work, two nanocrystalline magnesium-rich Mg–Ni–Y alloys (Mg80Ni10Y10 and Mg90Ni5Y5) were produced by melt-spinning. Their crystal structure, crystallization behaviour, and their cyclic hydrogenation/dehydrogenation properties were studied in view of their application as reversible hydrogen storage materials. This choice of alloy composition was used for several reasons: From the literature it is known that the addition of small amounts of nickel to magnesium significantly improves the hydrogenation/dehydrogenation kinetics and decreases the working temperature compared to that of pure magnesium [16–18]. Further, yttrium is widely known as glass-forming element in magnesium alloys [19]. On the other hand, ultrafine yttrium hydride particles, that are likely to form during hydrogenation of as-spun Mg–Ni–Y, improve the hydrogen sorption kinetics of magnesium [20]. Moreover, ultrafine crystal phases (like yttrium hydrides) can stabilize the nanostructure of magnesium-rich alloys by preventing further crystal coarsening during thermal processing, which could be very important in view of extensive hydrogenation/dehydrogenation cycling at elevated temperatures. Indeed, the produced Mg–Ni–Y alloys consist in the as-spun state of mixtures of nanocrystalline Mg(Ni;Y) grains with 5–20 nm in diameter that are embedded in an amorphous matrix as transmission electron microscopy (TEM) reveals. Differential scanning calorimetry (DSC) indicated that these alloys undergo several crystallization steps in the temperature range between 180 and 370 °C. It was found that only three thermal activation cycles of the as-quenched ribbons are required in order to reach excellent hydrogenation/dehydrogenation properties of these alloys. By thermogravimetric analysis (TGA) it could be shown that these alloys can reach reversible gravimetric hydrogen storage densities of up to 5.3 wt.%-H with hydrogenation and dehydrogenation rates of up to 1 wt.%-H/min even at temperatures of 250 °C. Presumably due to the yttrium content of the alloy, which triggers the formation of highly disperse yttrium hydride phases, the structure of the alloys remains nanocrystalline even after several hydrogenation/dehydrogenation cycles.

2. Experimental

2.1. Materials and preparation methods

Mg–Ni–Y master alloy ingots with two different chemical compositions (Mg80Ni10Y10 and Mg90Ni5Y5) were produced by induction-melting of a mixture of pure Mg (99.9% purity) metal, Ni (99.9% purity) powder, and a Ni–Y (Ni – 25.4 wt.%; Y – 75.5 wt.%) alloy in a tantalum crucible under argon atmosphere. During melt-spinning of these alloys, continuous ribbons with 35 μm in thickness and 10 mm in width were
obtained from a single roller melt-spinning device (PSI) which contains a copper wheel with a diameter of 200 mm and a constant surface velocity of 40 m/s as rapid cooling component. The melt-spinning experiments were carried out under argon atmosphere. Since it is well known from the literature that the melt-spun ribbons should be activated prior to hydrogenation [11, 12, 17], the thermal activation of the melt-spun ribbons was carried out for three cycles at 350°C and pressures between 2 and 30 bar H₂ for 11 h.

2.2. Analysis

The crystal structure characterization of the samples has been performed by X-ray diffraction analysis (XRD, D5000 Siemens) using Co Kα radiation in the scanning range of the diffraction angle between 10° and 100° (2θ). The spectra were analyzed with the Rietveld method [21], using the software package Topas 4.2 for the refinement of crystal structures and the calculation of the unit cell parameters as well as the phase abundances.

The thermal characteristics of the melt-spun ribbons were studied by DSC analysis (Netzsch DSC 404) for the melt-spun alloys at a heating rate of 10 K/min in argon atmosphere at ambient pressure.

The microstructure characterization of the specimens has been carried out using an EVO 50 ZEISS scanning electron microscope (SEM) and a FEI Tecnai G2 F20 TEM. For TEM

![Fig. 4 – TEM micrographs of as-spun Mg–Ni–Y alloys with the corresponding selected-area electron diffraction patterns: (a, b) Mg₈₀Ni₁₀Y₁₀ and (c, d) Mg₉₀Ni₅Y₅. (a, c) bright-field imaging mode and (b, d) dark-field imaging mode.](image)

![Fig. 5 – The three activation cycles of melt-spun Mg–Ni–Y ribbons (at 350 °C; 30/2 bar H₂ for 11/0.5 h).](image)

![Fig. 6 – Hydrogenation/dehydrogenation behaviour of the melt-spun and activated Mg₉₀Ni₅Y₅ alloy at 300 and 280 °C and at 20 bar H₂ (hydrogenation) and 2/1/0 bar H₂ (dehydrogenation).](image)
observations, the as-spun Mg–Ni–Y ribbons were ion milled for 10 h with an ion-milling system (BAL-TEC RES 101). For the TEM study of the hydrogenated alloys, the samples were ground into fine powders by adding ethanol and were dispersed thereafter on a copper micro-grid.

The hydrogenation/dehydrogenation properties (reaction kinetics) and cycle stability of the melt-spun Mg–Ni–Y ribbons were studied using a magnetic suspension balance (Rubotherm). Therefore, hydrogen desorption can be investigated at constant hydrogen partial pressures in the range from 10–3 to 101 bar, i.e. covering the operating pressure range of most proton-exchange membrane fuel cell systems.

3. Results and discussion

3.1. Structural characterization of as-spun and crystallized Mg–Ni–Y ribbons

The XRD patterns of the as-spun Mg90Ni5Y5 and Mg80Ni10Y10 ribbons are shown in Figs. 1 and 2. It can be seen that the as-quenched Mg80Ni10Y10 ribbon shows a typical amorphous structure. Mg90Ni5Y5 ribbons consist of Mg crystals embedded in an amorphous Mg–Ni–Y phase (0 0 2)-peak at 40° (2θ).

The crystallization temperatures of the as-spun Mg–Ni–Y ribbons were determined by DSC measurements, which displayed two and three exothermic peaks for Mg90Ni5Y5 and Mg80Ni10Y10, respectively (cf. Fig. 3). It can be seen that the crystallization of the as-quenched Mg–Ni–Y alloys consists of several steps and that Mg80Ni10Y10 has higher thermal stability compared to Mg90Ni5Y5. The structure characterization of Mg80Ni10Y10 using XRD showed that the first crystallization reaction at 200°C is the crystallization of Mg2Ni phase and is connected with the first exothermic DSC peak (cf. Fig. 3). The residual amorphous phase is stable even after the second crystallization step at 280°C and transforms mainly into Mg at 300°C.

Fig. 7 – Hydrogenation/dehydrogenation behaviour of the melt-spun and activated Mg80Ni10Y10 alloy at 300 and 280°C and at 20 bar H2 (hydrogenation) and 1/0 bar H2 (dehydrogenation).

The residual amorphous Mg80Ni10Y10 ribbon shows a typical amorphous structure. Mg90Ni5Y5 ribbons consist of Mg crystals embedded in an amorphous Mg–Ni–Y phase (0 0 2)-peak at 40° (2θ).

The crystallization temperatures of the as-spun Mg–Ni–Y ribbons were determined by DSC measurements, which displayed two and three exothermic peaks for Mg90Ni5Y5 and Mg80Ni10Y10, respectively (cf. Fig. 3). It can be seen that the crystallization of the as-quenched Mg–Ni–Y alloys consists of several steps and that Mg80Ni10Y10 has higher thermal stability compared to Mg90Ni5Y5. The structure characterization of Mg80Ni10Y10 using XRD showed that the first crystallization reaction at 200°C is the crystallization of Mg2Ni phase and is connected with the first exothermic DSC peak (cf. Fig. 3). The residual amorphous phase is stable even after the second crystallization step at 280°C and transforms mainly into Mg at 300°C.

Fig. 9 – Calculated (line) and measured (*) X-ray diffraction pattern for Mg80Ni10Y10 in the hydrogenated state together with difference and hkl markers for MgH2, YH3, YH2, and Mg2NiH4 (monoclin/cubic).

Fig. 10 – Calculated (line) and measured (*) X-ray diffraction pattern for Mg90Ni5Y5 in the hydrogenated state together with difference and hkl markers for MgH2, YH3, YH2, Mg2NiH4 (monoclin/cubic), Mg3NiH3, and Mg.
380 °C (the third exothermic DSC peak). Furthermore, a minority crystal phase with a smaller lattice parameter than Mg is observed (cf. Figs. 1 and 2) which we suggest could either be a Mg solid-solution (Mg-SS) phase or a Mg long-period stacking ordered (LPSO) structure. The suggested Mg-SS phase has smaller lattice parameters than pure Mg which could be caused by the substitution of Mg by Ni or Y or both. The LPSO phase is characterized by a (Y,Ni)-plane that is intercalated between a sequence of pure Mg planes [22]. The precise nature of this particular phase needs to be revealed in further studies.

In our XRD investigations we have not observed the formation of Ni–Y or Mg–Y intermetallics in any sample. Also, we can exclude any oxide formation of the constituents. After the activation treatment described above, the characterization of the hydrogenation and dehydrogenation properties of activated Mg–Ni–Y alloys was carried out at different temperatures of 300, 280, and 250 °C. Fig. 6 shows the hydrogen content and the applied system hydrogen pressure vs. time of the activated Mg_{90}Ni_{5}Y_{5} alloy for the absorption of hydrogen at 300 and 280 °C with an initial system pressure of 20 bar H2 and the desorption of hydrogen at 300 and 280 °C at pressures of 2 bar H2, 1 bar H2, and in vacuum, respectively. Obviously, the gravimetric hydrogen-storage density of Mg_{80}Ni_{10}Y_{10} alloy continues to increase with the number of cycles and achieves 5.3 wt.%-H at 280 °C. It can also be recognized that Mg_{90}Ni_{5}Y_{5} alloy does not desorb the formerly absorbed hydrogen at 300 and 280 °C at 2 bars and 1 bar H2 completely. The complete desorption can be achieved only in vacuum. The fact that the H-absorption capacity decreases between the second and the third cycle at 280 °C can be explained by the different initial states of the sample prior to each cycle. After the first cycle the sample did not desorb completely in comparison to the second cycle at 280 °C.

Fig. 7 depicts the hydrogen content and the hydrogen pressure vs. time of the activated Mg_{80}Ni_{10}Y_{10} alloy for the absorption of hydrogen at 300 and 280 °C at a partial pressure of 20 bar H2 as well as the desorption of hydrogen at 300 and 280 °C at a partial pressure of 1 bar H2 and in vacuum. As in the case of the activated Mg_{80}Ni_{10}Y_{10} alloy, the activated Mg_{90}Ni_{5}Y_{5} alloy does not desorb the formerly absorbed hydrogen completely, and the residual hydrogen can only be removed in vacuum. However, it can also absorb up to 5.3 wt.%-H at 280 °C and at a pressure of 20 bar H2.

The hydrogenation rates of the studied alloys are high at pressures of 20 bar H2, even at 250 °C (cf. Fig. 8), i.e. they can reach rates of up to 1 wt.%-H/min, while the hydrogen desorption rates at 250 °C slow down below 1 bar H2, and a complete hydrogen desorption can be observed only in vacuum. Obviously, in Fig. 8, the hydrogen content for Mg_{90}Ni_{5}Y_{5} is lower on absorption than the initial concentration on desorption which is due to the fact that only the first 30 min of the processes are depicted. However, the desorption was carried out after the full hydrogen capacity was reached after approximately 4 h.

Table 1 – Phase abundance of the hydrogenated melt-spun Mg–Ni–Y alloys refined by the Rietveld analysis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phase</th>
<th>Space group</th>
<th>Lattice parameters</th>
<th>Abundance (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg_{90}Ni_{5}Y_{5}, R_{wpp} = 11.25%</td>
<td>MgH3</td>
<td>P4/nmm</td>
<td>4.5194</td>
<td>35.47</td>
</tr>
<tr>
<td></td>
<td>YH3</td>
<td>P-3c1</td>
<td>6.3606</td>
<td>11.82</td>
</tr>
<tr>
<td></td>
<td>YH2</td>
<td>Fm-3 m</td>
<td>5.207</td>
<td>12.41</td>
</tr>
<tr>
<td></td>
<td>LT-Mg_{2}NiH_{4}</td>
<td>C2/c</td>
<td>14.4027</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>HT-Mg_{2}NiH_{4}</td>
<td>Fm-3 m</td>
<td>6.5070</td>
<td>5.80</td>
</tr>
<tr>
<td></td>
<td>MgH3</td>
<td>P4/nmm</td>
<td>4.5154</td>
<td>52.62</td>
</tr>
<tr>
<td></td>
<td>YH3</td>
<td>P-3c1</td>
<td>6.3548</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>YH2</td>
<td>Fm-3 m</td>
<td>5.1946</td>
<td>16.06</td>
</tr>
<tr>
<td></td>
<td>LT-Mg_{2}NiH_{4}</td>
<td>C2/c</td>
<td>14.315</td>
<td>16.35</td>
</tr>
<tr>
<td></td>
<td>HT-Mg_{2}NiH_{4}</td>
<td>Fm-3 m</td>
<td>6.5004</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>Mg_{80}Ni_{10}Y_{10}, R_{wpp} = 10.52%</td>
<td>MgNiH_{3.3}</td>
<td>P6_{3}22</td>
<td>5.23052</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>P6_{3}mmc</td>
<td>3.21117</td>
<td>2.1</td>
</tr>
</tbody>
</table>

After the activation treatment described above, the characterization of the hydrogenation and dehydrogenation properties of activated Mg–Ni–Y alloys was carried out at different temperatures of 300, 280, and 250 °C. Fig. 6 shows the hydrogen content and the applied system hydrogen pressure vs. time of the activated Mg_{90}Ni_{5}Y_{5} alloy for the absorption of hydrogen at 300 and 280 °C with an initial system pressure of 20 bar H2 and the desorption of hydrogen at 300 and 280 °C at pressures of 2 bar H2, 1 bar H2, and in vacuum, respectively. Obviously, the gravimetric hydrogen-storage density of Mg_{80}Ni_{10}Y_{10} alloy continues to increase with the number of cycles and achieves 5.3 wt.%-H at 280 °C. It can also be recognized that Mg_{90}Ni_{5}Y_{5} alloy does not desorb the formerly absorbed hydrogen at 300 and 280 °C at 2 bars and 1 bar H2 completely. The complete desorption can be achieved only in vacuum. The fact that the H-absorption capacity decreases between the second and the third cycle at 280 °C can be explained by the different initial states of the sample prior to each cycle. After the first cycle the sample did not desorb completely in comparison to the second cycle at 280 °C.

Fig. 7 depicts the hydrogen content and the hydrogen pressure vs. time of the activated Mg_{80}Ni_{10}Y_{10} alloy for the absorption of hydrogen at 300 and 280 °C at a partial pressure of 20 bar H2 as well as the desorption of hydrogen at 300 and 280 °C at a partial pressure of 1 bar H2 and in vacuum. As in the case of the activated Mg_{80}Ni_{10}Y_{10} alloy, the activated Mg_{90}Ni_{5}Y_{5} alloy does not desorb the formerly absorbed hydrogen completely, and the residual hydrogen can only be removed in vacuum. However, it can also absorb up to 5.3 wt.%-H at 280 °C and at a pressure of 20 bar H2.

The hydrogenation rates of the studied alloys are high at pressures of 20 bar H2, even at 250 °C (cf. Fig. 8), i.e. they can reach rates of up to 1 wt.%-H/min, while the hydrogen desorption rates at 250 °C slow down below 1 bar H2, and a complete hydrogen desorption can be observed only in vacuum. Obviously, in Fig. 8, the hydrogen content for Mg_{90}Ni_{5}Y_{5} is lower on absorption than the initial concentration on desorption which is due to the fact that only the first 30 min of the processes are depicted. However, the desorption was carried out after the full hydrogen capacity was reached after approximately 4 h.
In addition, it can also be noticed that especially at temperatures below 300°C the hydrogenation and dehydrogenation rates of Mg₈₀Ni₁₀Y₁₀ are higher than that of Mg₉₀Ni₅Y₅. These differences in the hydrogenation behaviour have to be associated with the different composition of the alloys as well as with the differences in their microstructure in the as-spun and hydrogenated state (cf. Figs. 4, 11, and 12). The higher hydrogenation rates of the Mg₈₀Ni₁₀Y₁₀ could be explained by its higher yttrium and nickel content. Yttrium is known to form very stable hydrides which act as catalysts for the hydrogenation of magnesium [20, 24]. Furthermore, yttrium can be solved in Mg₂Ni. In addition, yttrium possesses a larger atomic radius compared to nickel, thus yttrium increases the lattice parameter of Mg₂Ni to a certain extent which might lead to faster hydrogen diffusion in the Mg₂Ni phase [23]. Likewise, the existence of Mg₂NiH₄ also plays a catalytic role for the hydrogenation of magnesium [16, 17].

3.3. Microstructure and morphology of hydrogenated alloys

Figs. 9 and 10 show XRD diffraction spectra of the hydrogenated melt-spun Mg-Ni-Y alloys. The results of Rietveld analysis indicate that the hydrogenated Mg₈₀Ni₁₀Y₁₀ sample contains five different hydride phases (cf. Table 1): MgH₂, high-temperature (HT) and low-temperature (LT) Mg₂NiH₄, YH₂, and YH₃. The hydrogenated Mg₈₀Ni₁₀Y₁₀ ribbon contains additionally Mg and Mg₂NiH₃. These phases occurred probably due to incomplete hydrogenation of the sample and suggest a deficiency effect of the catalyst particles.

The SEM micrographs (backscattered electron imaging mode) in Figs. 9 and 10 show the corresponding hydrogenated microstructures of the melt-spun ribbons after 10.5 hydrogenation/dehydrogenation cycles. It can be stated that the ribbons basically retained their original structure even after 10 cycles. They were very brittle and could be powdered easily. As shown in Figs. 9 and 10, the microstructure of ribbons in the hydrogenated state consisted mainly of coarse Mg₂NiH₄ grains with 1–2 μm in size and of nanocrystalline yttrium hydride particles embedded in a MgH₂ matrix whose average crystal size is in the range of 100 nm (TEM results, not shown). From TEM investigations of the ribbons, the average size of yttrium hydride particles is determined to be about 50 nm. It can also be observed that the Mg₈₀Ni₁₀Y₁₀ sample contains coarser grains of Mg₂NiH₄ in comparison to Mg₉₀Ni₅Y₅. This can also be explained by the higher yttrium content in Mg₈₀Ni₁₀Y₁₀. In other words, nanoscale yttrium hydride phases very obviously stabilize the nanostructure of the Mg-Ni-Y alloys during thermal treatments.

In the literature, there are only a few investigations on the hydrogenation kinetics of magnesium-rich Mg-Ni-Y alloys. For example, Spassov et al. [9, 10] reported results of hydrogen storage properties of the various nanocrystalline and nanoamorphous Mg-Ni-Y alloys (Mg₈₇Ni₁₂Y₁, Mg₆₃Ni₃₀Y₇, Mg₇₆Ni₁₉Y₅, Mg₇₈Ni₁₈Y₄, and Mg₈₃Ni₉.₅Y₇.₅) produced by rapid solidification. In contrast to the results obtained in this study, the hydrogen charging of the ribbons was carried out by Spassov and co-workers electrolytically under galvanostatic conditions, and the amount of hydrogen was determined from the sample mass after hydrogenation. They found that these Mg-Ni-Y alloys show rather slow rate of hydrogen absorption (0.15–0.3 wt.%-H/min) and a maximum gravimetric hydrogen capacity of about 3.2 wt.%-H. In Ref. [24] the hydrogen sorption properties of Mg-20 wt.% Ni-Y composites prepared by reactive mechanical alloying were studied after the total milling time of 40 h. The hydrogen sorption behaviour of the composites was evaluated using a conventional volumetric method. This composite does not need activation for hydrogen storage process and it can absorb 5.59 wt.%-H at pressures of 30 bar H₂ at 200°C in 10 min and desorb 4.67 wt.%-H at 250°C in 30 min at a hydrogen pressure of 0.2 bar. Compared to these values, the Mg-Ni-Y alloys investigated in this study exhibit even higher hydrogen storage capacities and faster hydrogenation/dehydrogenation kinetics. Nonetheless, there is still a need for decreasing the temperatures of hydrogen desorption which could be achieved by catalytically more active elements, for example.
4. Conclusion

Structural and hydrogen storage properties of two melt-spun Mg–Ni–Y alloys (Mg₈₀Ni₁₀Y₁₀ and Mg₈₀Ni₁₀Y₁₀) were studied by TEM, SEM, XRD, DSC, and TGA. The as-quenched alloys were found to consist mainly of Mg(Ni,Y) nanocrystals, with an average size between 5 and 20 nm embedded in an amorphous matrix. The as-quenched Mg–Ni–Y ribbons were activated during the three hydrogenation/dehydrogenation cycles at 350 °C and 30/2 bar H₂. It was found that the activation behaviour of melt-spun alloys is different. The Mg₈₀Ni₁₀Y₁₀ sample shows generally higher thermal stability and higher hydrogenation rates compared to the Mg₉₀Ni₅Y₅ alloy. The activated Mg₈₀Ni₁₀Y₁₀ and Mg₈₀Ni₁₀Y₁₀ absorb about 5.3 wt.%-H at 280 °C under 20 bar H₂. The hydrogenation rates and the maximum hydrogen storage capacity of the alloys are quite high, even at 250 °C, while the dehydrogenation rates at 250 °C slow down at 1 bar H₂, thus full microstructural desorption can be achieved only in vacuum thus far. The microstructure of the hydrogenated melt-spun ribbons contained nanocrystalline yttrium hydride particles in the MgH₂ phase even after 10 hydrogenation/dehydrogenation cycles. In conclusion, the melt-spinning technique is very effective in obtaining nanocrystalline magnesium-rich and catalytically activated alloys. In this respect, the present study suggests that the Mg–Ni–Y system is very suitable for the reversible solid-state storage of hydrogen.

Acknowledgements

The authors would like to acknowledge the financial support of the Boysen-Stiftung and the Fraunhofer Attract program. Further, the authors thank Chr. Mickel (IFW Dresden) very much for TEM analyses and sample preparation. They also gratefully thank R. Leuschner, V. Pacheco, and M. Ruhnow for their practical support.

REFERENCES