

FRAUNHOFER INSTITUTE FOR MANUFACTURING TECHNOLOGY AND ADVANCED MATERIALS IFAM, BRANCH LAB DRESDEN

- Uniaxial press for the densification metal hydride composites
- 2 Cross-section of metal hydride composites (blue-red) with optimized heat transfer properties
- 3 Metal hydride composites for high-density hydrogen storage
- 4 Metal hydride storage tank for stationary fuel cell power systems

Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM Branch Lab Dresden

Winterbergstrasse 28 01277 Dresden I Germany

Contact

Dr. rer. nat. Lars Röntzsch Telefon +49 351 2537 411 E-Mail: Lars.Roentzsch @ifam-dd.fraunhofer.de

Dipl.-Chem. (FH) Sebastian Mauermann Telefon +49 351 2537 412

E-Mail: Sebastian.Mauermann @ifam-dd.fraunhofer.de

Fax +49 351 2537 399

www.ifam.fraunhofer.de/h2

METAL HYDRIDE TECHNOLOGY

Metal Hydride Center at Fraunhofer IFAM

Hydrogen gas can be stored highly compactly at low pressure through a chemical reaction with a hydrogen absorbing alloy whereby a solid metal hydride is formed (Fig. 1).

Based on our customer demands, Fraunhofer IFAM designs, fabricates and characterizes hydrogen storage materials with state-of-the-art methods. Furthermore, we offer engineering services to design, construct and test metal hydride storage tanks and other metal hydride-based devices, including their integration into hydrogen power systems (Fig. 2).

Metal Hydride Applications

- Hydrogen storage
- Hydrogen purification (7.0 and better)
- D₂ / H₂ separation
- Hydrogen gettering
- Hydrogen separation from gas mixtures
- Thermochemical devices
- Electrode materials for alkaline batteries
- Neutron moderation and absorption

Materials Classes Offered by Fraunhofer IFAM

- Transition metal hydride-forming alloys, e.g.: Fe-Ti, Zr-Mn, La-Ni, Ti-Mn alloys
- Complex hydrides (including dopants),
 e.g. LiAlH_A, NaAlH_A, LiNH₂
- Lightweight hydride-forming alloys, e.g.: Mg-Cu, Mg-Ni, Mg-RE alloys

Fig. 1 Metal hydride formation (schematics)

Fig. 2 Metal hydride fuel cell power system

Metal Hydride Research and Engineering Services

- Production and manufacturing of hydrogen storage materials
- Metal hydride "design" regarding:
 - Storage capacity
 - Hydrogenation kinetics
 - Heat and gas transfer properties
 - Cycle stability
 - State-of-health analysis
 - Recycling
- Metal hydride composites
- Testing and evaluation of metal hydrides (in operando, ex situ)
- Development and testing of metal hydride processing technologies
- Design and construction of metal hydride storage tanks and cartridges
- Simulation of hydrogen loading and unloading processes in metal hydride storage tanks
- Reliability tests of metal hydride tanks
- System integration of metal hydride storage tanks with
 - Electrolysers
 - H₂ fuel cells
 - H₂ internal combustion engines
- System development and testing of metal hydride-based devices:
 - H₂ compressors (vibrationless)
 - Heat pumps
 - Thermoboosters
 - D₂ / H₂ separators
 - H₂ purifiers
 - Thermomechanical actuators
 - Metal hydride gauges (filling meters)

- 5 Metal hydride tank for a fuel cell vehicle
- 6 In-operando testing of metal hydride composites (here: radiography)
- 7 Universal testing reactor for metal hydrides (200 bar; max. 400 °C)
- 8 Test rig for metal hydride tank evaluation

35 V [NI], P [bar] 30 25 20 15 H₂ Pressure 10 H₂ Volume Flow 0 250 500 750 1000 1250 1500 1750 2000 time [s] 70 Temperature [°C] 60 50 40 30 T, center 20 T, inner wall 10 750 1000 1500 250 500 1250 1750 2000 time [s]