Micro Parts Manufacturing by Powder Metallurgy (Micro-PM)

<u>Bernd Kieback</u>, Martin Dressler, Marie Jurisch, Kai Reuter, Sebastian Riecker, Thomas Studnitzky

World PM2016, Hamburg, 9-13 October 2016

Content

- 1. Introduction
- 2. Goals
- 3. Screen Printing
- 4. Sintering
- 5. Calibration
- 6. Future Work
- 7. Summary / Outlook

1. Introduction

Powder Metallurgy: Mass production of complex shaped parts with

highest accuracy (IT 7)

Process: Powder \rightarrow Mixing etc. \rightarrow Compaction

→ Sintering → Calibration (IT 7)

Compaction: Multi-level dies for densitiy =const.

Powder: $>100 \mu m$ (flowability)

Limits: Parts > 2-5 mm (particle size / tools)

flowability of fine powders: poor

2. Goals

Production of multi-level parts < 2mm with highest accuracy

Concept:

- Multi-level green parts by screen printing
- Sintering to high density
- Calibration in simple tool

Calibration

press/sinter

pressing debindering/sintering calibration ready parts

Small parts (< 2 mm) limited

- Rough particles (160 μm) do not flow into small dies
- Even green density necessary -> small complicated pressing tools are expensive

MIM

extruding debindering/sintering ready parts

Small parts (< 2 mm) are possible

- Pressing tools are expensive
- 3D screen printing

printing debindering/sintering calibration ready parts

Small parts (< 2 mm) are possible

- Tools (screens) are inexpensive
- Mass production capable
- No complicated pressing tools for powder compaction necessary

3D screen printing – process scheme

3D screen printing – possibilities

- Fine details
- Complex structures
- Cavities
- Material combinations
- Mass production

3D screen printing – surface quality artifacts

Mesh imprint screen mesh is visible if paste viscosity is not

<u>Grooves</u>

junction points at screen can cause grooves at the

Particle roughness
The spherical shape
of the sintered

particles causes

 $R_a \sim 5 \mu m$

Methods und Materials

- 316L powder PF-10F (5-10 μm)
- Sintering temperature → nearly full density
- Calibration pressure: ~1000 MPa
- Lubricant: M25
- Calibration speed: 0,1 mm/min

Green parts

Calibration Tool

Cylinders

Cylinder – sintered

Row XXV – "big gap" – single sided pressing

Row XXVIII – "small gap" – single sided pressing

Row XXVIII – "small gap" – <u>double sided</u> pressing

Double sided pressing, glossy surface!!

1000 MPa

Row XXVIII – "small gap" – double sides pressing 1200 MPa

Cold welding with the tool!!

Pressure1200 Mpa

→ To high !!!

R _a (µm)	R _z (μm)
0,7	3,8

Row XXVIII – "small gap" – Asp.-ratio: 1:1 – single sided pressing – 800 MPa

R _a (µm)	R _z (μm)
0,4	2,2

Row XXVIII – "small gap" – Asp.-ratio 1:1 –single sided pressing – 1000 MPa

GEAR-WHEELS

Dimensions

	Tooth ground	Tooth tip	
Ø Diameter (n=3)	1,15 mm	1,83 mm	
Height (Asp-ratio 1:2)	3,54 mm		

Row XXIII (big gap) before pressing

Row XXIII (big gap) (sintered)

Top:
Some rounding of edges during sintering

Bottom: Sharp edges due to constrained sintering on the substrate

Row XXIII before pressing (with die)

Gap

Die entry

Ø Die = 1,94 mm Ø Gear = 1,83 mm Gap = 0,055 mm

Row XXII (big gap) after pressing (1000 MPa)

500 µm

Roughness Row XXIII (big gap) → Aspect ratio: 1:2

sintered

Tooth flank Tooth tip Tooth ground R_a (µm) 4,5 3,6 4,9 R_{z} (µm) 22,6 20,5 26,8 Tooth flank Tooth Tooth ground R_a (μ m) 6,9 1,0 2,9 R_{z} (µm) 37.0 16,0

pressed

Result: ("big gap")

Calibration at Tool tip: good. Tooth ground and flanke: NO calibration.

Row XXVIII (small gap): Aspect ratio 1:2

Exact fit in the die!!

Row XXVIII (small gap): after pressing 1000 MPa

Roughness Row XXVIII (small gap) → Aspect ratio: 1:2

sintered

pressed

	Tooth ground	Tooth ground	Tooth flank
R _a (µm)	4,5	3,6	4,9
R_z (µm)	22,6	20,5	26,8
	Tooth	Tooth tip	Tooth flank
	ground		
R _a (µm)		1,0	5,5

Result: ("small gap")

Calibration at Tool tip: GOOD. Tooth ground: GOOD. Flanke: POOR

Row XXVIII (small gap) → Aspect ratio: 1:1

Stress-strain curve for the calibration of gear-wheels

"Big gap"

"Small gap"

Wall friction

Yield strength

Ejection Forces

Clearance = Gap (between tool and part)

Future work (To-do list)

- Influence of sintered density
- Aspect ratio
- Smaller dimensions (<< 2 mm)
- Other materials (steels, Pt, Au,..., Ti)
- Complex shapes (multi-level parts, holes)
- Micro-tools and calibration presses
- Automation

Summary /Outlook

- Mass production (10.000 x Mio. parts/year) of complex shaped small parts by 3D-printing and calibration is possible
- High accuracy (~ 1-5 μm)
- Low cost processes
- Development from Lab-scale to production
- Possible applications: microparts in medical, electronic, microsystems applications
- Alternative to cost-intensive machining for ductile materials

Thank you for your attention!

