FUSED DEPOSITION MODELING – OPPORTUNITIES FOR CHEAP METAL AM

Hamburg, 12.10.2016,

S. Riecker, J. Clouse, T. Studnitzky, O. Andersen, B. Kieback
Motivation

- Great variety of different AM-technologies – FDM more and more popular
- FDM-Printer application ranges from desktop printers for private use to professional series for design studies, prototyping and even for industrial manufacturing
- Low complexity of printing machine: easy to use and to maintain
- Low investment costs, starting at 800 € for self built systems, 2000 € for desktop printers

http://www.stratasys.com
www.chip.de
Goal of Studies: Development of a “Metal” Filament

- Sinterable and “suitable” for use in a low-cost desktop printer
- Requirements for the metal filament?
- Metal filling of more than 45 vol.%
- Polymer matrix: Thermoplastic carrier system and organic additives (plasticizer, dispersing agent)
 - Low viscosity (100 – 1000 Pas) at
 - working temperature of about 180-280 °C and
 - shear rates of about 100 – 1000 s⁻¹
- Flexibility and Strength
- Good layer adhesion during printing
- Aiming for thermal debinding, no solvent or acidic atmospheres
Project Goal: Development of a “Metal” Filament

- Model powder: 316L MIM powder
 - Spherical
 - $D_{50} = 6.9 \, \mu m$

- Thermoplasts

<table>
<thead>
<tr>
<th>FDM Filament Materials</th>
<th>MIM Feedstock Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>PP</td>
</tr>
<tr>
<td>PLA</td>
<td>PE</td>
</tr>
<tr>
<td>PPSU</td>
<td>PMMA</td>
</tr>
<tr>
<td>PET</td>
<td>POM</td>
</tr>
<tr>
<td>PA</td>
<td>Paraffin Wax</td>
</tr>
<tr>
<td>PC</td>
<td>EVA</td>
</tr>
</tbody>
</table>

- Materials
 - PLA
 - PET
 - ABS
 - PC
 - PA
 - PMMA
 - POM
 - PP
 - PE
 - Paraffin Wax
 - EVA
 - WAX
 - EVA

© Fraunhofer IFAM Dresden
Filament Preparation

- Metal powder is mixed with dispersing agent in two different ways
 - Route A: Solution coating
 - Route B: Powder mixing
- Compounding of additives in extruder
 - Powder Content 0 – 65 vol.% (reference and maximum loading)
- Extrusion of filament
- 12 different feedstock mixtures for filament extrusion experiments
Filament Extrusion

- Brabender TSE 20/40 Extruder
 - Double screw setup
 - 6 Heating zones 210-280 °C
- Die drooling/bearding caused by certain additives
- Oval cross section - soft filament
- Clogging at high particle loadings
- Smoke development
Filament Properties

- PLA filaments remain relatively brittle

- Best results for PA-filaments:
 - Flexible filaments > coilable
 - particle loadings up to 55 vol.%
 - filaments strong enough for printing

- Circular cross section
 - Diameter (2.6 ±0.2) mm

- Compounding inhomogeneities - surface color inconsistencies in some filaments
 - Important issue when printing through nozzle (0.4 mm)
Filament Characterization

PA Route A: Solution Coating

- Measured Density
- Theoretical Density

<table>
<thead>
<tr>
<th>Metal Powder (Vol.-%)</th>
<th>PLA 55 vol.%</th>
<th>PA 55 vol.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>65</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Density (g/cm³)
Filament Characterization

PA Route A: Solution Coating

- Filament density lower than expected
- Critical powder loading
- Decomposition of some additives
- Moisture content
- Compounding – processing issue
Filament Characterization

PA Route B: Powder mixing

- Measured Density
- Theoretical Density

Density (g/cm³)

Metal Powder (Vol.-%)

- Filament density lower than expected
- Critical powder loading
- Decomposition of some additives
- Moisture content
- Compounding – processing issue
Printing Trials

- Desktop Printer - Ultimaker 2
- Filament extruding setup
- Process parameters:
 - Filament extruding Setup:
 - Nozzle Diameter (0.8, 0.6, 0.4) mm
 - Feed Speeds (0.5 – 7) mm/s
 - Extrusion speeds of about (5 – 100) mm/s
 - Built rates (0.62 – 5) mm³/s
 - Temperature (220 - 290) °C
 - Desktop Printer:
 - Adjustment of Printing Speed, Nozzle Temperature, Fan Speed, Material Flow, Retraction length, Layer Height
Printing Trials – Setup: Printing Speed

- PA-filament, 50 vol.%, T = 250 °C, nozzle 0.8 mm
- Low speeds: inconsistent extrusion and unstable melt contact with the walls of the nozzle, strand breaks and occasional clogs, voids
- High speeds: higher flow stability for speeds [14 mm/s; 70 mm/s]
- Decent quality for speed around 20 – 25 mm/s

PA Route B: Extrusion Speeds from left to: 7 mm/s [0.88 mm³/s], 14 mm/s [1.76 mm³/s], 42 mm/s [5.3 mm³/s], 70 mm/s [8.8 mm³/s], 98 mm/s [12.37 mm³/s]
Printing Trials – Setup: Printing Temperature

- PA-filament, 50 vol.%, 14 mm/s extrusion speed, nozzle 0.8 mm
- Low temperature: more consistent extrusion, no strand breaks
- High temperature: strand breaks, increase in surface roughness
- Decent quality for 235°C – 240°C with low surface roughness and defects

PA Route B: Temperatures extruded at 14 mm/s from left to right: 225 °C, 235 °C, 250°C, 270 °C, 280°C, 290°C
Printing Trials – Common Defects

- Filament-nozzle-combination: sweet spot
 - Feed speed
 - Temperature
 - Speed of printhead
- Inconsistant flow
- Under- and Overextrusion
Printing Trials – Desktop Prints

- Printing of generic structures on desktop printer
 - Filament with 50 vol.% (≈ 88 wt.%) powder loading
 - 0.1 mm layer height
 - 0.4 mm standard nozzle
 - Good layer adhesion
Debinding and Sintering of the Filaments

- **Debinding/Sintering**
 - $T = 200 - 450 \, ^\circ C, 1250 \, ^\circ C$
 - Hydrogen atmosphere

- Great difference in sintering result:
 - Filament composition
 - Thermal debinding route

- PA-filament with 55 vol.% powder content (right)
 - Porosity ~11 %
 - Carbon content 0.011 wt.%
 - 316L limit = 0.03 wt.%

Sintering results for PA filaments with different dispersing agents
Debinding and Sintering of the Filaments

- **Debinding/Sintering**
 - $T = 200 \text{ – } 450 \, ^\circ \text{C, } 1250 \, ^\circ \text{C}$
 - Hydrogen atmosphere

- **Great difference in sintering result:**
 - Filament composition
 - Thermal debinding route

- **PA-filament with 55 vol.% powder content**
 - Porosity $\sim 11 \%$
 - Carbon content 0.011 wt.%
 - 316L limit = 0.03 wt.%

Sintered cup: First printing and sintering tests on Desktop printer with poor surface quality.
Summary and Outlook

- First results of internal studies of metal FDM-process
- Printable filament (0.4 mm nozzle, 0.1 mm layerheight)
 - flexible, mechanic strength, printable up to 55 vol % loading
 - Low cost desktop systems can be used without reconstruction to manufacture green parts
- Sinterable filament
 - Thermal debinding step
- Printing and sintering needs quality improvements
- Focus on the development of the metal filament in upcoming project:
 - Filament composition with increased particle loading
 - Printing parameters for better surface quality and less defects
 - Sintering regime for high density sintered parts
Invitation for symposium
Non beam-based Additive Manufacturing Approaches for Metallic Parts
at Materials Science & Technology 2017
The meeting will be held 10/8/2017 - 10/12/2017, Pittsburgh PA, USA.

Thank you for your attention!

Dipl.-Ing. Sebastian Riecker
Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden
Winterbergstraße 28 | 01277 Dresden | Germany
Phone +49 351 2537-429
Mail sebastian.riecker@ifam-dd.fraunhofer.de