3D SCREEN AND STENCIL PRINTING REAL MASS PRODUCTION FOR METALS, CERAMICS AND THEIR COMBINATIONS

Fraunhofer Maranch

© Fraunhofer IFAM Dresden

Metal Additive Manufacturing @ Fraunhofer IFAM

Laser Beam Melting (LBM) [HB]

- **Electron Beam** Melting (EBM) [DD]
- 3D Metal Printing -Binder Jetting approach (3DP) [HB]

3D Metal Printing -Binder Jetting approach (3DP) [HB]

3D Screen Printing (3DMP) [DD]

Metal Additive Manufacturing @ Frauphofer IFAM

nicom

Laser Beam Melting (LBM) [HB]

Electron Beam Melting (EBM) [DD]

3D Metal Printing -Binder Jetting approach (3DP) [HB]

EKRA

EKRA

3D Screen Printing (3DSP) [DD]

3D with screen printing?

- 2D-screen printing widely used in the industry in mass production
 - Photovoltaic
 - Sensors
 - Solder bumps
 - **...**
- 3D-screen printing patented in 1993
- First 3D-screen printing machine at Fraunhofer IFAM Dresden in 2008
- New machine installed 2014, most advanced machine worldwide

3D-screen printing – process outline

Sample screen (left) and close-up showing coating (right)

© Fraunhofer IFAM Dresden

3D-screen printing – process outline

3D-screen printing – process outline

- thin walls (100 μm)
- openings (80 µm)
- cavities
- brittle, hard materials
- material combinations

- thin walls (100 μm)
- openings (80 µm)
- cavities
- brittle, hard materials
- material combinations

- thin walls (100 μm)
- openings (80 µm)
- cavities
- brittle, hard materials
- material combinations

- thin walls (100 μm)
- openings (80 µm)
- cavities
- brittle, hard materials
- material combinations

- thin walls (100 μm)
- openings (80 µm)
- cavities
- brittle, hard materials
- material combinations

3D-screen printing – materials

- Metals variety same as MIM Fe, W, Ni, Ti, Al, La, Cu, Ag, Co, …
- Ceramics (in cooperation with Fraunhofer IKTS) \blacksquare Al₂O₃, ZrO₂ SiC

316L - spherical

Mo - agglomerated

SiC- irregular

IFAM Branch Lab Dresden

Tungsten / Nickel

TiAl6V4

LaFeBMn

© Fraunhofer IFAM Dresden

3D-screen printing – impurities (TiAl6V4)

Processing step	Impurities [wt.%]	
	0	С
As-received powder	0,206	0,011
Green structures	0,203	0,028
Brown structures	0,392	0,103
Sintered structures	0,411	0,114
After electrolytic reduction	0,18	0,07

- Heat treatment critical step
- Parts can be reduced in additional step
- → <u>Session 49 (</u>AM-Special aspects) "3D screen printing additive manufacturing of finely structured titanium based parts"

3D-screen printing – applications

Example: Microparts

- Complex parts up to printed with five screens
- 1.5 Million parts per year possible on lab machine
- Roughness Ra ~ 2 µm without postprocessing
- → <u>Session 23 (Shaping)</u>, "Microparts Manufacturing by Powder Metallurgy (Micro PM)"

Example: Micro cooling systems

Economic Aspects

3D-screen printing – equipment

- printing area 200 x 300 mm²
- air-conditioned printing chamber
- 2 printing tables
- net-buildrate 30- 200 cm³/h (sintered)

3D-screen printing – case study – heat exchanger

Productivity / Costs comparable to MIM parts

Economical aspects

Technique	Built rate	Wall thickness	Powder size	Tools?		
	[cm ³ / h]	[µm]	[µm]			
3D-Screen Printing (Lab machine IFAM)	30 - 100	80	< 25	Screen / Stencil		
Screen Printing (potential Mass Production)	> 1000	80	< 25	Screen / Stencil		
EKRA ASYS Group Screen Printing Technologies						
SLM / EBM	100	250	> 45			
FDM	50	400				

© Fraunhofer IFAM Dresden

3D-screen printing – summary

- High resolution < 100 µm</p>
- High aspect ratios > 100
- Metals, ceramics, powder mixtures, multimaterial systems
- Real mass production possible
- Small parts preferred
- Limited freeform capabilities
- 3D screen printing offers new possibilities in part production

IFAM booth: 197