Press Releases

Reset
  • © Fraunhofer IFAM

    Stationary energy storage systems aiming to relieve the public power grid during peak loads play an important role in the implementation the energy transition. Zinc-ion batteries have been the focus of attention for these and other applications for some time - but so far without commercial success. The BMBF-funded research project "Aqueous Zinc-Ion Batteries ZIB2" is now investigating how an industrial implementation can be successful. The use of non-critical, low-cost materials, an increase in efficiency and extension of cycle life as well as the application of industrial cell designs are the central scientific goals of the project.

    more info
  • © Fraunhofer IWES/Gerrit Wolken-Möhlmann

    Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

    more info
  • © Fraunhofer

    The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Stade, Germany, will present automation solutions for sustainable aircraft production at the International Aerospace Exhibition SIAE ("Paris Air Show") in Paris-Le Bourget from June 19 to 25, 2023, at the Fraunhofer AVIATION & SPACE booth on the joint booth of the German Aerospace Industries Association, BDLI (Hall 2C l Stand D357).

    more info
  • Deployment of the underwater lander off the island of Helgoland
    © Fraunhofer IFAM

    Marine benthic organisms colonize all available hard substrates – including offshore foundations, leading to altered flow conditions, increased loads, and more difficult inspection tasks. In order to realistically test the development of fouling-control coatings for this application, a test infrastructure was anchored on the seabed in a specially marked research area off the offshore island of Helgoland within the "ROBUST" project. Material and coating samples for the maritime industry can be tested and further developed on the cubic, metallic underwater lander. A research network of regional partners provides this unique testing opportunity.

    more info
  • © Fraunhofer IFAM

    The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Stade, Germany, will be presenting automation solutions for sustainable production at the Leading International Composites Show JEC WORLD 2023 from April 25 to 27 in Paris at the joint booth of Composites United e.V. (Hall 6 l Booth Q 28 l Position 16).

    more info
  • Clemens Kubeil prepares a membrane for coating at Fraunhofer IFAM’s electrolysis laboratory
    © Fraunhofer IFAM Dresden

    Research and industry have recognized the potential of alkaline AEM electrolysis and expect a fast technology development during the next decade. Fraunhofer IFAM and sunfire, together with Canadian materials partner Ionomr Innovations, are now launching the "Integrate" research project to apply the promising technology on an industrial scale.

    more info
  • UAS deployment for the inspection of an offshore wind turbine
    © Fraunhofer IFAM

    With the "Offshore Drone Campus Cuxhaven – ODCC for short", Fraunhofer IFAM is creating a test and development infrastructure for unmanned aircraft systems for offshore use. The new location thus offers unique local and technical opportunities to further develop offshore drones together with scientific partners and industry and to participate at regulatory levels. Research focuses on the safe and efficient use of drones for offshore work such as maintenance, inspection, repair or surveying, as well as the development of new propulsion and material protection concepts for the demanding use of the aircraft under offshore conditions.

    more info
  • By measuring the so-called dynamic impedance of the battery cells the state of the battery cells during charging can be determined directly
    © Fraunhofer IFAM

    The aging of battery cells cannot be easily determined under real conditions. However, an accurate statement about the aging state of the cells in operation forms the basis for a better understanding of the aging mechanisms of a battery and for extending its lifetime. In order to be able to determine the condition of the battery cells more precisely and without laboratory effort, the determination of the AC resistance within the battery using dynamic impedance spectroscopy has been further developed at Fraunhofer IFAM in Bremen. This allows measurements to be made during operation, enabling statements to be made about performance in real time.

    more info
  • © Fraunhofer IFAM Dresden

    Large quantities of hydrogen will be needed to ensure a successful energy transition. As part of the HighHy project, an international team of researchers from Germany and New Zealand is working on improving the efficiency of the emerging AEM electrolysis technology to produce green hydrogen. To make this possible, scientists from the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden have turned to the readily available and resource-saving metals manganese and nickel in a bid to introduce this promising electrolysis process to large-scale industry. The new tech-nology offers a number of other advantages in addition to reduced costs when compared to the existing processes.

    more info
  • © BMEL/photothek

    As part of the awarding of the "Digital Future Farms and Future Regions for Sustainable Agriculture" funding notification at the International Green Week (IGW) in Berlin, Germany, the Federal Minister of Food and Agriculture Cem Özdemir handed over the grant approval for the farm of the future "SAMSON" to the project partners Fraunhofer IFAM, HAW Hamburg, hochschule 21, and TU Hamburg on January 24, 2023.

    more info

You can find the press releases of past years in our archive